Jun 30, 2024

Evaluating and inducing steganography in LLMs

Artem Karpov

This report demonstrates that large language models are capable

of hiding simple 8 bit information in their output using associations

from more powerful overseers (other LLMs or humans). Without

direct steganography fine tuning, LLAMA 3 8B can guess a 8 bit

hidden message in a plain text in most cases (69%), however a

more capable model, GPT-3.5 was able to catch almost all of them

(84%). More research is required to investigate how this ability

might be induced or improved via RL training in similar and larger

models.

Reviewer's Comments

Reviewer's Comments

Arrow
Arrow
Arrow
Arrow
Arrow

The work is the start of a fairly ambitious project to do PPO fine-tuning of LLMs for steganography (as the work acknowledges, this is notoriously hard). This is definitely an interesting direction, and I appreciate that someone has actually gone and taken a stab at the hard thing.

Cite this work

@misc {

title={

Evaluating and inducing steganography in LLMs

},

author={

Artem Karpov

},

date={

6/30/24

},

organization={Apart Research},

note={Research submission to the research sprint hosted by Apart.},

howpublished={https://apartresearch.com}

}

Recent Projects

View All

View All

Feb 2, 2026

Markov Chain Lock Watermarking: Provably Secure Authentication for LLM Outputs

We present Markov Chain Lock (MCL) watermarking, a cryptographically secure framework for authenticating LLM outputs. MCL constrains token generation to follow a secret Markov chain over SHA-256 vocabulary partitions. Using doubly stochastic transition matrices, we prove four theoretical guarantees: (1) exponentially decaying false positive rates via Hoeffding bounds, (2) graceful degradation under adversarial modification with closed-form expected scores, (3) information-theoretic security without key access, and (4) bounded quality loss via KL divergence. Experiments on 173 Wikipedia prompts using Llama-3.2-3B demonstrate that the optimal 7-state soft cycle configuration achieves 100\% detection, 0\% FPR, and perplexity 4.20. Robustness testing confirms detection above 96\% even with 30\% word replacement. The framework enables $O(n)$ model-free detection, addressing EU AI Act Article 50 requirements. Code available at \url{https://github.com/ChenghengLi/MCLW}

Read More

Feb 2, 2026

Prototyping an Embedded Off-Switch for AI Compute

This project prototypes an embedded off-switch for AI accelerators. The security block requires periodic cryptographic authorization to operate: the chip generates a nonce, an external authority signs it, and the chip verifies the signature before granting time-limited permission. Without valid authorization, outputs are gated to zero. The design was implemented in HardCaml and validated in simulation.

Read More

Feb 2, 2026

Fingerprinting All AI Cluster I/O Without Mutually Trusted Processors

We design and simulate a "border patrol" device for generating cryptographic evidence of data traffic entering and leaving an AI cluster, while eliminating the specific analog and steganographic side-channels that post-hoc verification can not close. The device eliminates the need for any mutually trusted logic, while still meeting the security needs of the prover and verifier.

Read More

Feb 2, 2026

Markov Chain Lock Watermarking: Provably Secure Authentication for LLM Outputs

We present Markov Chain Lock (MCL) watermarking, a cryptographically secure framework for authenticating LLM outputs. MCL constrains token generation to follow a secret Markov chain over SHA-256 vocabulary partitions. Using doubly stochastic transition matrices, we prove four theoretical guarantees: (1) exponentially decaying false positive rates via Hoeffding bounds, (2) graceful degradation under adversarial modification with closed-form expected scores, (3) information-theoretic security without key access, and (4) bounded quality loss via KL divergence. Experiments on 173 Wikipedia prompts using Llama-3.2-3B demonstrate that the optimal 7-state soft cycle configuration achieves 100\% detection, 0\% FPR, and perplexity 4.20. Robustness testing confirms detection above 96\% even with 30\% word replacement. The framework enables $O(n)$ model-free detection, addressing EU AI Act Article 50 requirements. Code available at \url{https://github.com/ChenghengLi/MCLW}

Read More

Feb 2, 2026

Prototyping an Embedded Off-Switch for AI Compute

This project prototypes an embedded off-switch for AI accelerators. The security block requires periodic cryptographic authorization to operate: the chip generates a nonce, an external authority signs it, and the chip verifies the signature before granting time-limited permission. Without valid authorization, outputs are gated to zero. The design was implemented in HardCaml and validated in simulation.

Read More

Feb 2, 2026

Markov Chain Lock Watermarking: Provably Secure Authentication for LLM Outputs

We present Markov Chain Lock (MCL) watermarking, a cryptographically secure framework for authenticating LLM outputs. MCL constrains token generation to follow a secret Markov chain over SHA-256 vocabulary partitions. Using doubly stochastic transition matrices, we prove four theoretical guarantees: (1) exponentially decaying false positive rates via Hoeffding bounds, (2) graceful degradation under adversarial modification with closed-form expected scores, (3) information-theoretic security without key access, and (4) bounded quality loss via KL divergence. Experiments on 173 Wikipedia prompts using Llama-3.2-3B demonstrate that the optimal 7-state soft cycle configuration achieves 100\% detection, 0\% FPR, and perplexity 4.20. Robustness testing confirms detection above 96\% even with 30\% word replacement. The framework enables $O(n)$ model-free detection, addressing EU AI Act Article 50 requirements. Code available at \url{https://github.com/ChenghengLi/MCLW}

Read More

Feb 2, 2026

Prototyping an Embedded Off-Switch for AI Compute

This project prototypes an embedded off-switch for AI accelerators. The security block requires periodic cryptographic authorization to operate: the chip generates a nonce, an external authority signs it, and the chip verifies the signature before granting time-limited permission. Without valid authorization, outputs are gated to zero. The design was implemented in HardCaml and validated in simulation.

Read More

Feb 2, 2026

Markov Chain Lock Watermarking: Provably Secure Authentication for LLM Outputs

We present Markov Chain Lock (MCL) watermarking, a cryptographically secure framework for authenticating LLM outputs. MCL constrains token generation to follow a secret Markov chain over SHA-256 vocabulary partitions. Using doubly stochastic transition matrices, we prove four theoretical guarantees: (1) exponentially decaying false positive rates via Hoeffding bounds, (2) graceful degradation under adversarial modification with closed-form expected scores, (3) information-theoretic security without key access, and (4) bounded quality loss via KL divergence. Experiments on 173 Wikipedia prompts using Llama-3.2-3B demonstrate that the optimal 7-state soft cycle configuration achieves 100\% detection, 0\% FPR, and perplexity 4.20. Robustness testing confirms detection above 96\% even with 30\% word replacement. The framework enables $O(n)$ model-free detection, addressing EU AI Act Article 50 requirements. Code available at \url{https://github.com/ChenghengLi/MCLW}

Read More

Feb 2, 2026

Prototyping an Embedded Off-Switch for AI Compute

This project prototypes an embedded off-switch for AI accelerators. The security block requires periodic cryptographic authorization to operate: the chip generates a nonce, an external authority signs it, and the chip verifies the signature before granting time-limited permission. Without valid authorization, outputs are gated to zero. The design was implemented in HardCaml and validated in simulation.

Read More

This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.
This work was done during one weekend by research workshop participants and does not represent the work of Apart Research.